martes, 24 de abril de 2012

Destilación petróleo


Destilación petróleo
La destilación es la operación fundamental para el refino del petróleo. Su objetivo es conseguir, mediante calor, separar los diversos componentes del crudo. Cuando el crudo llega a la refinería es sometido a un proceso denominado “destilación fraccionada”.
El petróleo crudo calentado se separa físicamente en distintas fracciones de destilación directa, diferenciadas por puntos de ebullición específicos y clasificadas, por orden decreciente de volatilidad, en gases, destilados ligeros, destilados intermedios, gasóleos y residuo.

Existen varias sistemas de destilación:
Destilación atmosférica
En las torres de destilación atmosférica, el crudo desalinizado se precalienta utilizando calor recuperado del proceso. Después pasa a un calentador de carga de crudo de caldeo directo, y desde allí a la columna de destilación vertical, justo por encima del fondo, a presiones ligeramente superiores a la atmosférica y a temperaturas comprendidas entre 343 °C y 371 °C, para evitar el craqueo térmico que se produciría a temperaturas superiores. Las fracciones ligeras (de bajo punto de ebullición) se difunden en la parte superior de la torre, de donde son extraídas continuamente y enviadas a otras unidades para su ulterior proceso, tratamiento, mezcla y distribución.
Las fracciones con los puntos de ebullición más bajos (el gas combustible y la nafta ligera) se extraen de la parte superior de la torre por una tubería en forma de vapores. La nafta, o gasolina de destilación directa, se toma de la sección superior de la torre como corriente de productos de evaporación. Tales productos se utilizan como cargas petroquímicas y de reforma, material para mezclas de gasolina, disolventes y GPL.
Las fracciones del rango de ebullición intermedio (gasóleo, nafta pesada y destilados) se extraen de la sección intermedia de la torre como corrientes laterales y se envían a las operaciones de acabado para su empleo como queroseno, gasóleo diesel, fuel, combustible para aviones de reacción, material de craqueo catalítico y productos para mezclas. Algunas de estas fracciones líquidas se separan de sus residuos ligeros, que se devuelven a la torre como corrientes de reflujo descendentes.
Las fracciones pesadas, de alto punto de ebullición (denominadas residuos o crudo reducido), que se condensan o permanecen en el fondo de la torre, se utilizan como fuel, para fabricar betún o como carga de craqueo, o bien se conducen a un calentador y a la torre de destilación al vacío para su ulterior fraccionamiento.
Destilación al vacío
Las torres de destilación al vacío proporcionan la presión reducida necesaria para evitar el craqueo térmico al destilar el residuo, o crudo reducido, que llega de la torre atmosférica a mayores temperaturas. Los diseños internos de algunas torres de vacío se diferencian de los de las torres atmosféricas en que en lugar de platos se utiliza relleno al azar y pastillas separadoras de partículas aéreas. A veces se emplean también torres de mayor diámetro para reducir las velocidades. Una torre de vacío ordinaria de primera fase produce gasóleos, material base para aceites lubricantes y residuos pesados para desasfaltación de propano. Una torre de segunda fase, que trabaja con un nivel menor de vacío, destila el excedente de residuo de la torre atmosférica que no se utiliza para procesado de lubricantes, y el residuo sobrante de la primera torre de vacío no utilizado para la
desasfaltación.
Por lo común, las torres de vacío se usan para separar productos de craqueo catalítico del residuo sobrante. Asimismo, los residuos de las torres de vacío pueden enviarse a un coquificador, utilizarse como material para lubricantes o asfalto, o desulfurarse y mezclarse para obtener fuel bajo en azufre.
Columnas de destilación
En las refinerías hay muchas otras torres de destilación más pequeñas, denominadas columnas, diseñadas para separar productos específicos y exclusivos, todas las cuales trabajan según los mismos principios que las torres atmosféricas. Por ejemplo, un despropanizador es una columna pequeña diseñada para separar el propano del isobutano y otros componentes más pesados. Para separar el etilbenceno y el xileno se utiliza otra columna más grande. Una torres pequeñas de “burbujeo”, llamadas torres rectificadoras, utilizan vapor para eliminar vestigios de productos ligeros (gasolina) de corrientes de productos más pesados.
Las temperaturas, presiones y reflujo de control deben mantenerse dentro de los parámetros operacionales para evitar que se produzca craqueo térmico dentro de las torres de destilación. Se utilizan sistemas de descarga dado que pueden producirse desviaciones de presión, temperatura o niveles de líquidos si fallan los dispositivos de control automático. Se vigilan las operaciones para evitar la entrada de crudo en la carga de la
unidad de reforma. Los crudos utilizados como materia prima contienen a veces cantidades apreciables de agua en suspensión que se separa al principio del proceso y que, junto con el agua procedente de la purga de vapor que queda en la torre, se deposita en el fondo de ésta. Es posible que esta agua se caliente hasta alcanzar el punto de ebullición, originando una explosión por vaporización instantánea al entrar en contacto con el aceite
de la unidad.
El intercambiador de precalentamiento, el horno de precalentamiento, el intercambiador de calor de residuos, la torre atmosférica, el horno de vacío, la torre de vacío y la sección superior de evaporación sufren corrosión por efecto del ácido clorhídrico (HCl), el ácido sulfhídrico (H2S), el agua, los compuestos de azufre y los ácidos orgánicos. Cuando se procesan crudos sulfurosos es posible que la corrosión sea intensa tanto en las torres atmosféricas como en las de vacío si la temperatura de las partes metálicas excede de 232 °C, y en los tubos de los hornos. El H2S húmedo también produce grietas en el acero. Al procesar crudos con alto contenido de nitrógeno se forman, en los gases de combustión de los hornos, óxidos de nitrógeno, que son corrosivos para el acero cuando se enfrían a bajas temperaturas en presencia de agua.
Se utilizan productos químicos para controlar la corrosión por ácido clorhídrico producida en las unidades de destilación.
Puede inyectarse amoníaco en la corriente de la sección superior
antes de la condensación inicial, y/o inyectarse con mucho cuidado una solución alcalina en la alimentación de petróleo crudo caliente. Si no se inyecta suficiente agua de lavado, se forman depósitos de cloruro de amonio y se produce una intensa corrosión.
La destilación atmosférica y al vacío son procesos cerrados, por lo que las exposiciones son mínimas. Cuando se procesan crudos agrios (con alto contenido de azufre) se produce exposición al ácido sulfhídrico en el intercambiador y el horno de precalentamiento, la zona de destilación instantánea y el sistema de evaporación superior de la torre, el horno y la torre de vacío, y el intercambiador de calor de residuos. Todos los crudos de
petróleo y los productos de destilación contienen compuestos aromáticos de alto punto de ebullición, como los HAP cancerígenos.
La exposición de corta duración a altas concentraciones de vapor de nafta causa cefaleas, náuseas y mareos, y la de larga duración, pérdida del conocimiento. Las naftas aromáticas contienen benceno, por lo que debe limitarse la exposición a las mismas. Es posible que los productos de evaporación del deshexanizador
contengan grandes cantidades de hexano normal que afecten al sistema nervioso. En el intercambiador de precalentamiento, en zonas superiores de la torre y en productos de evaporación a veces hay cloruro de hidrógeno. El agua residual contiene a veces sulfuros hidrosolubles en altas concentraciones y otros compuestos hidrosolubles, como amoníaco, cloruros, fenol y mercaptano, dependiendo del crudo de partida y de los productos químicos de tratamiento.
                                                                              Joel Sacardo.


Destilación fraccionada del petróleo


domingo, 22 de abril de 2012

Día de la Tierra


                                                    




22 de abril: Día de la Tierra




 El 22 de abril de cada año se celebra en muchos países el Día de la Tierra. Este día fue creado por el senador estadounidense Gaylord Nelson, en el año 1970, esto para promover entre los ciudadanos una reflexión a los problemas tales como:
  • Superpoblación
  • Contaminación ambiental
  • Conservación de la biodiversidad
  • El agua
  • Calentamiento global
  • Educación ambiental en general

miércoles, 18 de abril de 2012

Titanic


Las diferentes densidades del aire caliente y el aire frío, amontonadas una encima de la otra, reflejan luz y generan un efecto resplandor o espejismo.
¿Habrá sido eso lo que provocó la colisión del Titanic contra el iceberg?www.natgeo.tv/titanic100
De: Nat Geo
            
                                                           De Negri, Matias

LABORATORIO: Reconocimiento de iones quimicos

objetivo: identificar y diferenciar elementos o compuestos quimicos mediante el expectro de luz emitido por sus atomos a la llama

materiales:espatula de metal - tubos de ensallo-gravilla-cuchara quimica -pipeta-matraz-solucion de cloruro de magnecio- cloro de bario -cloruro de sodio- cloruro de calcio-cloruro de hierro-sulfato de cobre-clruro de potacio

MUESTRA:cloruro de magnecio COLOR DE LLAMA:naranja ION METALICO PRESENTE:mg++
MUESTRA:cloruro de bario COLOR DE LLAMA:verde amarillento ION METALICO PRESENTE:ba++
MUESTRA:cloruro de sodio COLOR DE LLAMA:naranja fuerte ION METALICO PRESENTE:na+
MUESTRA:cloruro de potacio COLOR DE LLAMA:rojo ION METALICO PRESENTE:ca++
MUESTRA:sulfuro de cobre COLOR DE LLAMA:versodoso ION METALICO PRESENTE:cu+
MUESTRA:cloruro de hierro COLOR DE LLAMA:naranja rojisi ION METALICO PRESENTE:fe++
MUESTRA:cloruro de potacio COLOR DE LLAMA:violacio ION METALICO PRESENTE:K+

observacion:presentamos las soluciones con la espatula que se puedo observar mejor que con la tiza, pudimos ver cada color de llama correspondiente a cada muestra.

                                                                 



                                                                           Alfredo Lattanzio.

Documental El Petróleo

            


Del petróleo se dice que es el energético más importante en la historia de la humanidad; un recurso natural no renovable que aporta el mayor porcentaje del total de la energía que se consume en el mundo.
Aunque se conoce de su existencia y utilización desde épocas milenarias, la historia del petróleo como elemento vital y factor estratégico de desarrollo es relativamente reciente, de menos de 200 años.


En 1850 Samuel Kier, un boticario de Pittsburg, Pennsylvania (EE.UU.), lo comercializó por vez primera bajo el nombre de "aceite de roca" o "petróleo".


A partir de entonces se puede decir que comenzó el desarrollo de la industria del petróleo y el verdadero aprovechamiento de un recurso que indudablemente ha contribuido a la formación del mundo actual.


La alta dependencia que el mundo tiene del petróleo y la inestabilidad que caracteriza el mercado internacional y los precios de este producto, han llevado a que se investiguen energéticos alternativos sin que hasta el momento se haya logrado una opción que realmente lo sustituya, aunque se han dado importantes pasos en ese sentido.


A los otros países productores se les denomina "independientes" y entre los principales se encuentran el Reino Unido, Noruega, México, Rusia y Estados Unidos. Este último es el mayor consumidor de petróleo, pero al mismo tiempo es uno de los grandes productores.


Colombia forma parte de este grupo de naciones, aunque su participación se considera "marginal" tanto en reservas como en producción y volúmenes de exportación. No es, por consiguiente, un país petrolero.


El petróleo es uno de los más importantes productos que se negocian en el mercado mundial de materias primas. Las bolsas de Nueva York (NIMEX) y de Londres (IPC) son los principales centros donde se transa, pero también tiene un mercado "spot" o al momento. Los precios se regulan por unos marcadores o "precios de referencia", entre los que sobresalen el WTI, Bren, Dubai.

El Petróleo


El producto es un compuesto químico complejo en el que coexisten partes sólidas, líquidas y gaseosas. Lo forman, por una parte, unos compuestos denominados hidrocarburos, formados por átomos de carbono e hidrógeno y, por otra, pequeñas proporciones de nitrógeno, azufre, oxígeno y algunos metales. Se presenta de forma natural en depósitos de roca sedimentaria y sólo en  en los que hubo mar.
Su color es variable, entre el ámbar y el negro y el significado etimológico de la palabra petróleo es  de piedra, por tener la textura de un aceitey encontrarse en yacimientos de roca sedimentaria.
ORIGEN
Factores para su formación:
  • Ausencia de aire
  • Restos de plantas y animales (sobre todo, plancton marino)
  • Gran presión de las capas de tierra
  • Altas temperaturas
  •  de bacterias
LOCALIZACIÓN
Al ser un compuesto líquido, su presencia no se localiza habitualmente en el lugar en el que se generó, sino que ha sufrido previamente un movimientovertical o lateral, filtrándose a través de rocas porosas, a veces una distancia considerable, hasta encontrar una salida al  –en  caso parte se evapora y parte se oxida al contactar con el aire, con lo cual el petróleo en sí desaparece– o hasta encontrar una roca no porosa que le impide la salida. Entonces se habla de un yacimiento.
NOTA: El petróleo no forma lagos subterráneos; siempre aparece impregnado en rocas porosas.
Estratigráficos: En forma de cuña alargada que se inserta entre dos estratos.
Anticlinal: En un repliegue del subsuelo, que almacena el petróleo en el arqueamiento del terreno.
Falla: Cuando el terreno se fractura, los estratos que antes coincidían se separan. Si el estrato que contenía petróleo encuentra entonces una roca no porosa, se forma la bolsa o yacimiento.
En las últimas décadas se ha desarrollado enormemente la búsqueda de yacimientos  el mar, los cuales, si bien tienen similares características que los terrestres en cuanto a estructura de las bolsas, presentan muchas mayores dificultades a la hora de su localización y, por añadidura, de su explotación.
                                                                                                                                   SOTELO,MARÍA FLORENCIA.

miércoles, 11 de abril de 2012

ENLACES IONICOS Y COVALENTES.


ENLACE IONICO

Qué es el enlace iónico?
Es el enlace que se da entre elementos de electronegatividades muy diferentes. Se produce una cesión de electrones del elemento menos electronegativo al mas electronegativo y se forman los respectivos iones positivos (los que pierden electrones) y negativos (los átomos que ganan los electrones).
Este tipo de enlace suele darse entre elementos que están a un extremo y otro de la tabla periódica. O sea, el enlace se produce entre elementos muy electronegativos (no metales) y elementos poco electronegativos (metales).

¿Qué mantiene la unión?
La fuerza de atracción entre las cargas positivas y las cargas negativas que se forman; es decir, la fuerza de atracción entre los cationes y los aniones.

   Propiedades
  • Temperaturas de fusión y ebullición muy elevadas. Sólidos a temperatura ambiente. La red cristalina es muy estable por lo que resulta muy difícil romperla.
  • Son duros (resistentes al rayado).
  • No conducen la electricidad en estado sólido, los iones en la red cristalina están en posiciones fijas, no quedan partículas libres que puedan conducir la corriente eléctrica.
  • Son solubles en agua por lo general, los iones quedan libres al disolverse y puede conducir la electricidad en dicha situación.
  • Al fundirse también se liberan de sus posiciones fijas los iones, pudiendo conducir la electricidad.

ENLACE COVALENTE

¿Qué es el enlace covalente?
Es el enlace que se da entre elementos de electronegatividades altas y muy parecidas, en estos casos ninguno de los átomos tiene más posibilidades que el otro de perder o ganar los electrones. La forma de cumplir la regla de octeto es mediante la compartición de electrones entre dos átomos. Cada par de electrones que se comparten es un enlace.
Este tipo de enlace se produce entre elementos muy electronegativos (no metales).
Los electrones que se comparten se encuentran localizados entre los átomos que los comparten.

¿Qué mantiene la unión?
La fuerza de atracción entre las cargas positivas de los núcleos y las cargas negativas de los electrones que se comparten.

opiedades.
Son las habituales de los enlaces covalentes:
  • Temperaturas de fusión bajas. A temperatura ambiente se encuentran en estado gaseoso, líquido (volátil) o sólido de bajo punto de fusión.
  • La temperaturas de ebullición son igualmente bajas.
  • No conducen la electricidad en ningún estado físico dado que los electrones del enlace están fuertemente localizados y atraídos por los dos núcleos de los átomos que los comparten.
  • Son muy malos conductores del calor.
  • La mayoría son poco solubles en agua. Cuando se disuelven en agua no se forman iones dado que el enlace covalente no los forma, por tanto, si se disuelven tampoco conducen la electricidad.

    DE MICHELE

martes, 10 de abril de 2012

10 de abril Dia Nacional de la Ciencia y la Tecnología

cientifico
 
El 10 de abril se celebra en Argentina el Día de la Ciencia y la Técnica en honor al científico argentino Bernardo Houssay, quien recibió el Premio Nobel por sus descubrimientos en Fisiología y Medicina, del papel de la hormona liberada por la hipófisis en el metabolismo de los azúcares.

Cada vez que usamos nuestro mp3 o nos conectamos a internet con una computadora, no nos damos cuenta de que todo lo fue creado y desarrollado por la ciencia. Prácticamente todo lo que nos rodea, es producto del trabajo de muchos científicos que trabajan para mejorar y ayudar al hombre en sus tareas.

lunes, 9 de abril de 2012

Enlaces químicos



1. Generalidades de los enlaces quimicos
Los enlaces quimicos, son las fuerzas que mantienen unidos a los atomos.
Cuando los átomos se enlazan entre si, ceden, aceptan o comparten electrones. Son los electrones de valencia quienes determinan de que forma se unirá un atomo con otro y las caracteristicas del enlace.
2. Regla del octeto.
EL ultimo grupo de la tabla periodica VIII A (18), que forma la familia de los gases nobles, son los elementos mas estables de la tabla periodica. Esto se deben a que tienen 8 electrones en su capa mas externa, excepto el Helio que tiene solo 2 electrones, que tambien se considera como una configuracion estable.
Los elementos al combinarse unos con otros, aceptan, ceden o comparten electrones con la finalidad de tener 8 electrones en su nivel más externo, esto es lo que se conoce como la regla del octeto.
3. Enlace ionico
Caracteristicas:
Esta formado por metal + no metal
No forma moleculas verdaderas, existe como un agregado de aniones (iones negativos) y cationes (iones positivos).
Los metales ceden electrones formando por cationes, los no metales aceptan electrones formando aniones.
Los compuestos formados pos enlaces io;nicos tienen las siguientes caracteristicas:
Son solidos a temperatura ambiente, ninguno es un liquido o un gas.
Son buenos conductores del calor y la electricidad.
Tienen altos puntos de fusion y ebullicion.
Son solubles en solventes polares como el agua

 Modelo de esperas y varillas de un cristal de cloruro de sodio. El diametro de un ion cloruro es alrededor del doble del de un ion de sodio

4.- Enlace covalente
Caracteristicas:
Esta basado en la comparticion de electrones. Los atomos no ganan ni pierden electrones, COMPARTEN.
Esta formado por elementos no metalicos. Pueden ser 2 o 3 no metales.
Pueden estar unidos por enlaces sencillos, dobles o triples, dependiendo de los elementos que se unen.
Las caracteristicas de los compuestos unidos por enlaces covalentes son:
Los compuestos covalentes pueden presentarse en cualquier estado de la materia: solido, liquido o gaseoso.
Son malos conductores del calor y la electricidad.
Tienen punto de fusion y ebullicion relativamente bajos.
Son solubles en solventes polares como benceno, tetracloruro de carbono, etc., e insolubles en solventes polares como el agua.

 Florencia Sotelo.

domingo, 8 de abril de 2012

LOGRAN CREAR UN COMPUESTO IÓNICO CON UN SOLO ELEMENTO:
Este es el primer caso de un cristal iónico compuesto únicamente con un solo elemento químico, el boro.Ha sido desarrollado por un equipo de investigadores de varias universidades estadounidenses y europeas.
Para lograrlo se tuvieron que emplear condiciones extremas, a altas temperaturas y presiones superiores a 100.000 atmósferas. ¿Pero cómo puede ser un elemento iónico si necesitamos dos cargas diferentes y hablamos del mismo elemento? Se consigue mediante una nueva estructura que incorpora dos tipos de “nanoclusters” muy diferentes, con propiedades electrónicas diferentes y de nuevo gracias a la nanotecnología. Como las electronegatividades de estos dos clusters son diferentes, provoca la redistribución y la aparición de un carácter iónico parcial en la estructura elemental.
Sorprendentemente, los centros de masa se encuentran en la misma posición que el ejemplo clásico de compuesto iónico, el NaCl (cloruro sódico o sal común).
Y como es lógico, no sólo la estructura es similar, si no que también se detectan propiedades típicas de los compuestos iónicos. 

miércoles, 4 de abril de 2012

Un día como hoy de 1879 nacía Albert Einstein, considerado el científico más importante del siglo XX. En 1921 obtuvo el Premio Nobel de Física por sus grandes contribuciones a la física teórica.